Acids and Bases

Review: What is an acid?

Brønsted/Lowry acid: a proton donor proton donor?...

a proton is also an H⁺ ion

in water, H_2O + donated $H^+ \rightarrow H_3O^+$ • H_3O^+ = "hydronium ion"

Review: Acid Strength

- Strong acids <u>release all</u> of their H⁺ ions
 - [strong acid] = [H⁺]
 - Strong acids are strong electrolytes
- Weak acids <u>hold on to most</u> of their H⁺ ions
 - [weak acid]>>>[H⁺]
 - Weak acids are weak electrolytes
 - Weak acids reach equilibrium with "neutralization" products

What is a base?

Brønsted/Lowry base: a proton acceptor proton acceptor?...

any substance that will take an H⁺ ion

in water, $H_2O + base \rightarrow OH^- + Hbase^+$

Properties of bases

- Commonly called "antacids"
- React with fats and oils to produce soap
- feel slippery
- taste bitter
- damage living tissues
- pH 7 14
- neutralize acids

Common bases

There are three common varieties of bases:

1) Hydroxide compounds (OH⁻) ex: NaOH, Ba(OH)₂ 2) Carbonates (CO_3^{2-}) and bicarbonates (HCO₃⁻) ex: Na₂CO₃, NaHCO₃, CaCO₃ 3) Ammonia (NH₃) and amines

pOH calculation $pOH = -log [OH^{-}]$

$[OH^{-}] = 10^{-pOH}$

pH & pOH relationship

In pure water at 25°C: $[H+] = 1 \times 10^{-7} M$ $[OH-] = 1 \times 10^{-7} M$ Therefore, $[H^+] \times [OH^-] = 1 \times 10^{-14}$

And pH + pOH = 14

"the Big 5" $pH = -log [H^+]$ $[H^+] = 10^{-pH}$ $pOH = -log [OH^{-}]$ $[OH^{-}] = 10^{-pOH}$ pH + pOH = 14

Hydroxide bases

- Soluble hydroxides release OHdirectly into the water
- NaOH(s) \rightarrow Na⁺_(aq)+OH⁻_(aq)
- Strong bases = 100% of the OH's released into water
- Alkali metals hydroxides + Ba(OH)₂

"Arrhenius" Neutralization

- Works for the reaction of a <u>strong acid</u> with a <u>strong base (OH⁻ compounds)</u>
- Remember acid (or base strength) has to do with how much of the acid (or base) ionizes in water, not directly how many H+ or OH- are present
- ♦ 100% ionization = "strong"
 ♦ HCI, HBr, HI, H_2SO_4 , HNO_3 , $HCIO_4$

Arrhenius Neutralization

Hydroxide base – general form

- Strong Acid + Strong Base → Salt + H₂O
- what's actually happening?
 - $H^+ + OH^- \rightarrow H_2O$
 - Salt = the anion from the acid + the cation from the base
- pH = 7 at the "end point"
 - (no excess reagents)
 - Both products are "neutral"

Arrhenius Neutralization

Examples with a hydroxide base

$NaOH + HCI \rightarrow NaCI + H_2O$

 $H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2 H_2O$

Acids and Bases